Downconversion in Pr$^{3+}$–Yb$^{3+}$ co-doped ZBLA fluoride glasses

Brigitte BOULARD1, Alessandro CHIASERA2, Cristina ARMELLINI2, Stefano VARAS2, Thi Ngoc Lam TRAN3,2,4, Marcello MENEGHETTI1,3, Adel BOUAJA6, Saloua BELMOKHTAR6, Francesco ENRICHI7,2, Lidia ZUR7,2, Anna LUKOWIAK8, Giancarlo C. RIGHINI7,11, Maurizio FERRARI2,7

1 Institut des Molécules et Matériaux du Mans, UMR CNRS 6283, Université du Maine, Av. O. Messiaen, 72085 Le Mans cedex 09, France
2 IFN-CNR CSMFO Lab., and FBK Photonics Unit via alla Cascata 56/C Povo, 38123 Trento, Italy
3 Department of Civil, Environmental and Mechanical Engineering, Trento University Via Mesiano, 77, 38123 Trento, Italy
4 Ho Chi Minh City University of Technical Education, 1 Vo Van Ngan Street, Linh Chieu Ward, Thu Duc District, Ho Chi Minh City, Viet Nam
5 Dipartimento di Fisica, Università di Trento, via Sommarive 14, Povo, 38123 Trento, Italy
6 Laboratory of Innovative Technologies, LIT, ENSA–Tangier, University Abdelmalek Essaâdi, Tangier, Morocco
7 Centro di Studi e Ricerche “Enrico Fermi”, Piazza del Viminale 1, 00184 Roma, Italy
8 Institute of Low Temperature and Structure Research PAS, Okolna St. 2, 50-422 Wroclaw, Poland
11MDF Lab IFAC- CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
OUTLINE

- Pr\(^{3+}\)-Yb\(^{3+}\) activated ZBLA GLASS FABRICATION
- THERMAL PROPERTIES
- OPTICAL PROPERTIES
- ENERGY TRANSFER EFFICIENCIES
- CONCLUSIONS AND PERSPECTIVES
Pr$^{3+}$-Yb$^{3+}$ activated ZBLA GLASS FABRICATION (1/2)

RE doping of the base ZBLA glass

$57\text{ZrF}_4 - 34\text{BaF}_2 - 5\text{LaF}_3 - 4\text{AlF}_3$

is achieved by substitution of LaF_3 by REF_3 and by addition of REF_3 for total doping higher than 5 mol%.

Two series of glasses were fabricated by the melt-quenching technique with the following mol% compositions:

series 1:

$57 \text{ ZrF}_4 - 34 \text{ BaF}_2 - (5-x) \text{ LaF}_3 - 4\text{AlF}_3 - 0.5 \text{PrF}_3 - x \text{YbF}_3$

($x = 0, 1, 2, 3$ and 4.5)

series 2:

$57 \text{ ZrF}_4 - 34 \text{ BaF}_2 - 4\text{AlF}_3 - 0.5 \text{PrF}_3 - x \text{YbF}_3$

($x = 6, 8$ and 10).
The fluoride components (purity > 99.9%) for a total of 5g were mixed and melted at 875°C for 10 min in a dry glove box (H₂O = 1 ppm) under inert atmosphere (argon). The temperature was shortly taken to 900°C (5 min) in order to minimize the losses of ZrF₄, the melt was then poured onto a preheated (220°C) brass mold.
Thermal properties (1/3)

Thermal and optical data for co-doped 0.5Pr$^{3+}$-xYb$^{3+}$ ZBLA glasses: glass transition temperature (T_g), crystallization temperature (T_x), stability criteria ($\Delta T = T_x - T_g$) and refractive index n at 633 nm. The accuracy is ±1°C for the temperatures and ±0.0005 for n.

<table>
<thead>
<tr>
<th>x (mol%)</th>
<th>T_g (°C)</th>
<th>T_x (°C)</th>
<th>ΔT (°C)</th>
<th>$n_{@633\text{nm}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>319</td>
<td>397</td>
<td>78</td>
<td>1.5161</td>
</tr>
<tr>
<td>1</td>
<td>320</td>
<td>394</td>
<td>74</td>
<td>1.5151</td>
</tr>
<tr>
<td>2</td>
<td>321</td>
<td>390</td>
<td>69</td>
<td>1.5147</td>
</tr>
<tr>
<td>3</td>
<td>321</td>
<td>382</td>
<td>61</td>
<td>1.5134</td>
</tr>
<tr>
<td>4.5</td>
<td>320</td>
<td>392</td>
<td>72</td>
<td>1.5129</td>
</tr>
<tr>
<td>6</td>
<td>321</td>
<td>388</td>
<td>67</td>
<td>1.5132</td>
</tr>
<tr>
<td>8</td>
<td>331</td>
<td>394</td>
<td>63</td>
<td>1.5136</td>
</tr>
<tr>
<td>10</td>
<td>335</td>
<td>399</td>
<td>64</td>
<td>1.5136</td>
</tr>
</tbody>
</table>
Vitreous transition temperature Tg and refractive index n @ 633 nm as function of Yb$^{3+}$ concentration for 0.5Pr$^{3+}$-xYb$^{3+}$ co-doped glasses. The dots lines represent visual guides.
Thermal properties (3/3)

- The thermal stability (ΔT) decreases with the Yb$^{3+}$ concentration.

- No crystallization was detected even for high RE doping.

- T_g increases for $x \geq \sim 5$ mol% of Yb$^{3+}$ while it remains nearly the same at lower concentration.

The decrease in the series 1 is due to the lower refractive index of YbF$_3$ compared with that of LaF$_3$ 1.5238 and 1.5346 respectively at 633 nm.
Absorption spectrum for the 0.5Pr\(^{3+}\)-1Yb\(^{3+}\) co-doped ZBLA glass and terrestrial solar spectrum (AM1.5); Evolution of the Yb\(^{3+}\): \(^2\)F\(_{7/2}\) \(\rightarrow\) \(^2\)F\(_{5/2}\) absorption coefficient \(\alpha\) as function of the Yb\(^{3+}\) concentration: the slope gives the absorption cross section of Yb\(^{3+}\): \(\alpha_{\text{abs}} = 1.06 \pm 0.02 \times 10^{-20} \text{ cm}^{-2}\).
Energy transfer efficiencies - Down conversion (1/6)

Schematic energy level diagram of Pr$^{3+}$ and Yb$^{3+}$ ions explaining the energy transfer process between the dopants. Two IR photons can be obtained upon absorption of one blue photon via two sequential resonant ET steps from Pr$^{3+}$ to Yb$^{3+}$: Pr$^{3+}$ ($^3P_1 \otimes ^1G_4$); Yb$^{3+}$ ($^2F_{7/2} \rightarrow ^2F_{5/2}$) and Pr$^{3+}$ ($^1G_4 \otimes ^3H_4$); Yb$^{3+}$ ($^2F_{7/2} \rightarrow ^2F_{5/2}$).
Photoluminescence spectra under 440 nm excitation of 0.5Pr$^{3+}$- xYb$^{3+}$ co-doped ZBLA glasses as function of Yb$^{3+}$ content. No effects related to Yb$^{3+}$ content are observed.
The intensity of the emission band of Pr$^{3+}$ at 910 nm decreases down to zero when Yb$^{3+}$ reaches 6 mol%: effective ET from Pr$^{3+}$ to Yb$^{3+}$: Pr$^{3+}$ ($^3P_1 \rightarrow ^1G_4$) ; Yb$^{3+}$ ($^2F_{7/2} \rightarrow ^2F_{5/2}$).

For low Yb$^{3+}$ concentrations, there is a competition between the radiative desexcitation of 3P_0 level and ET.

Photoluminescence spectra in the NIR for glasses ZBLA: 0.5Pr$^{3+}$ - xYb$^{3+}$ under 440 nm excitation. The dashed spectrum corresponds to a ZBLA: 0.5 Pr$^{3+}$ glass sample which is not polluted by Er$^{3+}$ impurities. The spectra of the co-doped glasses are normalized to illustrate the effect of photon reabsorption.
Decay curves corresponding to the 3P_0 state of Pr$^{3+}$ ions monitored at 478 nm under 440 nm excitation for different Yb$^{3+}$ concentrations. The inset shows the dependence of the average decay time τ as a function of the Yb$^{3+}$ concentration.

$$E_{TE} = 1 - \frac{\tau_{Pr - xYb}}{\tau_{Pr}}$$
Energy transfer efficiencies - Down conversion (5/6)

Comparison of energy transfer efficiencies with Yb\(^{3+}\) concentration for different 0.5Pr\(^{3+}\)-xYb\(^{3+}\) co-doped hosts: ZBLA, ZLAG and ISBZ fluoride glasses, crystalline CaF\(_2\), K\(_3\)YF\(_{10}\) and YF\(_3\).
Luminescence decay of the Yb$^{3+}$: 2F$_{5/2}$ \rightarrow 2F$_{7/2}$ emission at 978 nm in Pr$^{3+}$-x Yb$^{3+}$ co-doped ZBLA glasses excited at 440 nm. The non single exponential decay at low Yb$^{3+}$ content is due to the presence of Er$^{3+}$ impurities. The inset shows the dependence of the decay times as function of Yb$^{3+}$ concentration.
Conclusions and Perspectives

- 0.5Pr³⁺-xYb³⁺ ZBLA glasses were prepared with x from 0 to 10 mol%.

- The PL emission in the visible and NIR, decay time of the Pr³⁺: ³P₀ ® ³H₄ and Yb³⁺: ²F₅/₂ ® ²F₇/₂ transitions were measured under blue excitation at 440 nm as a function of the Yb³⁺ concentration.

- Energy transfer from Pr³⁺ to Yb³⁺ was demonstrated in the ZBLA glass and the maximum efficiency for the first step of DC process was estimated to be 86% for 10 mol% of Yb³⁺.

- However the process was found less efficient than in other fluoride hosts (lanthanum fluorozirconate and fluoroidate glasses, KY₃F₁₀ single crystal) although RE dopants are supposed to be randomly distributed.

GLASS CERAMIC SHOULD BE THE SUITABLE ROUTE TO MANAGE ENERGY TRANSFER EVEN AT HIGH RE CONTENT
Acknowledgments

The research activity was performed in the framework of

- CNR-CNRST joint project (2014–2015)
- CNR-PAS joint project (2014–2016)
- Centro Fermi PLANS project
- Bilateral PLESC project “Plasmonics for a better efficiency of solar cells” between South Africa and Italy (contributo del Ministero degli Affari Esteri e della Cooperazione Internazionale, Direzione Generale per la Promozione del Sistema Paese).